A Covariant Form of the Navier-Stokes Equation for the Galilean Conformal Algebra

نویسنده

  • Ayan Mukhopadhyay
چکیده

We demonstrate that the Navier-Stokes equation can be covariantized under the full infinite dimensional Galilean Conformal Algebra (GCA), such that it reduces to the usual Navier-Stokes equation in an inertial frame. The covariantization is possible only for incompressible flows, i.e. when the divergence of the velocity field vanishes. Using the continuity equation, we can fix the transformation of the pressure and density under GCA uniquely. We also find that when all chemical potentials vanish, cs, which denotes the speed of sound in an inertial frame comoving with the flow, must either be a fundamental constant or given in terms of microscopic parameters. We will discuss how both could be possible. In absence of chemical potentials, we also find that the covariance under GCA implies that either the viscosity should vanish or the microscopic theory should have a length scale or a time scale or both. We argue that we can be open to the later possibility. Finally, we see that the higher derivative corrections to the Naver-Stokes equation, can be covariantized, only if they are restricted to certain possible combinations in the inertial frame. We explicitly evaluate all possible three derivative corrections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparative study between two numerical solutions of the Navier-Stokes equations

The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...

متن کامل

Higher derivatives estimate for the 3D Navier-Stokes equation

In this article, a non linear family of spaces, based on the energy dissipation, is introduced. This family bridges an energy space (containing weak solutions to Navier-Stokes equation) to a critical space (invariant through the canonical scaling of the Navier-Stokes equation). This family is used to get uniform estimates on higher derivatives to solutions to the 3D Navier-Stokes equations. Tho...

متن کامل

Scientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations

The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...

متن کامل

Turbulent Flow over Cars

In this paper the flow behaviour over a number of car bodies is studied. For this purpose the unsteady 2-D incompressible Navier-Stokes equations have been applied. After averaging and nondimensionalizing the equations, the system of equations has been transformed from the Cartesian (x-y) coordinates to a body fitted generalized (-) coordinate. As the flow is incompressible, the density in the ...

متن کامل

Investigation of instable fluid velocity in pipes with internal nanofluid flow based on Navier-Stokes equations

In this article, the instable fluid velocity in the pipes with internal nanofluid is studied. The fluid is mixed by SiO2, AL2O3, CuO and TiO2 nanoparticles in which the equivalent characteristic of nanofluid is calculated by rule of mixture. The force induced by the nanofluid is assumed in radial direction and is obtained by Navier-Stokes equation considering viscosity of nanofluid. The displac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009